Vincent, B. R., Knop, O., Linden, T., Cameron, S. & Robertson, K. N. (1988). Can. J. Chem. 66, 3060-3069.

Yvon, K., Jeitschko, W. & Parthé, E. (1977). J. Appl. Cryst. 10, 73-74.

Acta Cryst. (1993). C49, 2045-2046

Methyl 4-(Benzylamino)-6-methyl-2-oxo-3cyclohexene-1-carboxylate, C₁₆H₁₉NO₃

MACIEJ KUBICKI † AND PENELOPE W. CODDING

Departments of Chemistry and of Pharmacology and Therapeutics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1 N4

(Received 23 February 1993; accepted 14 June 1993)

Abstract

The cyclohexene ring adopts an almost ideal sofa conformation. The bond lengths of the C=C-C=O fragment indicate strong conjugation through these bonds. Other planar fragments of the molecule, *i.e.* the phenyl ring and the ester group, make angles of 60.82 (4) and 75.20 (6)°, respectively, with the plane of the cyclohexene ring. The methyl substituent occupies an equatorial position. In the crystal structure, the intermolecular N-H···O hydrogen bonds form infinite chains of molecules along the [010] direction.

Comment

The title compound (I) has been found to exhibit anticonvulsant activity with a remarkable lack of neurotoxicity. The protective index, PI (defined as the ratio of the median toxic dose, TD_{50} , to the median effective dose, ED_{50}), was found to be 7.7 in mice and 18.7 in rats (Edafiogho *et al.*, 1992). These values compare favourably with the respective values for currently marketed anticonvulsants.

† On leave from the Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland.

The cyclohexene ring exists in a sofa conformation with atoms C1-C5 almost perfectly coplanar and the largest deviation from the least-squares plane being 0.006(1) Å; atom C6 deviates 0.618(2) Å from this plane. A small value for the asymmetry parameter ΔC_s^3 (Duax & Norton, 1975) of 0.75 indicates only minor distortion from an ideal sofa conformation. Also, the values of the intra-annular torsion angles are close to the values calculated by Bucourt & Hainaut (1965) for this conformation. The bond lengths C2-O2 and C3-C4 are significantly lengthened while the bond C2-C3 is shortened in comparison with typical values for an O=C-C=Cgroup (Allen et al., 1987; Abell, Allen, Bugg, Doyle & Raithby, 1988), and the fragment O2-C2-C3-C4-N4 is nearly planar. These features indicate significant conjugation in this fragment. The phenyl ring is planar with a maximum deviation of 0.006 (1) Å. The angle between the plane of the ester group O11=C11-O12-C12 and the plane of phenyl ring is $45.68(7)^{\circ}$. The methyl group (C61) is in an equatorial position, as indicated by the values of the torsion angles C4-C5-C6-C61 and C2-C1-C6-C61 of -173.3 (1) and 172.9 (1)°, respectively. In the crystal structure, the molecules are connected by N4—H4···O2(x, -1 + y, z) hydrogen bonds $[N \cdots O 2.930(1), H \cdots O 2.13(1) \text{ Å}, N - H \cdots O 162(1)^{\circ}]$ to form infinite chains.

Fig. 1. Thermal ellipsoid representation of the molecule (Johnson, 1976) with the atomic numbering scheme. Anisotropic ellipsoids are drawn at the 50% probability level; H atoms are represented as spheres of arbitrary radii.

Experimental

Crystal data $C_{16}H_{19}NO_3$ $M_r = 273.32$ Monoclinic $P2_1/n$ a = 8.9562 (4) Å b = 7.1033 (3) Å c = 22.7440 (10) Å $\beta = 90.017$ (4)° V = 1446.94 (11) Å³ Z = 4

 $D_x = 1.255 \text{ Mg m}^{-3}$ Cu K α radiation $\lambda = 1.54178 \text{ Å}$ Cell parameters from 25 reflections $\theta = 30.30-53.55^{\circ}$ $\mu = 0.701 \text{ mm}^{-1}$ T = 293 (2) K Plate $0.35 \times 0.35 \times 0.10 \text{ mm}$ Colourless

Acta Crystallographica Section C ISSN 0108-2701 © 1993

Data collection	Table 2. Geometric parameters (Å, °)				
CAD-4F diffractometer	$R_{\rm int} = 0.0241$	C1-C11	1.508 (2)	N4—C41	1.455 (2)
$\omega/2\theta$ scans	$\theta_{\rm max} = 74.87^{\circ}$	C1C2	1.528 (2)	C41-C1'	1.502 (2)
Absorption correction	$h = 0 \rightarrow 11$	C1C6	1.533 (2)	C1'-C6'	1.385 (2)
none	$k = 0 \rightarrow 8$	C11—O11	1.194 (2)	C1'-C2'	1.387 (2)
2160 management reflections	1 - 29, 29	C11-012	1.335 (2)	C2'-C3'	1.383 (2)
STOO measured renections	$l = -20 \rightarrow 20$	C12-012	1.436 (2)	C3'-C4'	1.376 (3)
2967 independent reflections	3 standard reflections	$C_2 = O_2$	1.2441 (15)	C4' - C5'	1.375 (3)
2683 observed reflections	frequency: 2000 s	$C_2 - C_3$	1.410 (2)	CS - C6	1.377 (2)
$[I < 2\sigma(I)]$	intensity variation: 4.3%	C3-C4 C4-N4	1.361 (2)	C5C6 C6 C61	1.522 (2)
	-	C4C5	1.333 (2)	0-00	1.528 (2)
Refinement			100.04 (10)	04 N4 041	100 70 (11)
\mathbf{D}	A 0.007 ¹ -3	C11 - C1 - C2	109.04 (10)	V4 - N4 - V41	122.73 (11)
Reinement on F	$\Delta \rho_{\rm max} = 0.207 {\rm e A}^\circ$	$C_{1}^{2} - C_{1}^{2} - C_{6}^{2}$	112.79(10) 113.40(10)	$1^{4}-1^{4}-1^{4}$	112.04 (11)
$R[F > 4\sigma(F)] = 0.0410$	$\Delta \rho_{\rm min}$ = -0.121 e A ⁻³	011 - 011 - 012	123 48 (13)	C6' - C1' - C41	119.62 (12)
$wR(F^2) = 0.1115$	Extinction correction:	011-C11-C1	125.44 (13)	$C_{1}^{2} - C_{1}^{2} - C_{41}^{41}$	121 71 (12)
S = 1.085	SHELXL92 (Sheldrick,	012-C11-C1	111.08 (11)	C3' - C2' - C1'	120.26 (14)
2967 reflections	1993)	C11-O12-C12	116.5 (2)	C4'-C3'-C2'	120.3 (2)
258 parameters	Extinction coefficient:	O2-C2-C3	123.20 (12)	C5'-C4'-C3'	119.75 (14)
All II otom monomotions		O2-C2-C1	117.93 (11)	C4'-C5'-C6'	120.06 (15)
All n-atom parameters re-		C3C2C1	118.84 (10)	C5'-C6'-C1'	120.92 (15)
nned	Atomic scattering factors	C4-C3-C2	122.32 (11)	C4C5C6	113.50 (10)
Calculated weights	from International Tables	N4-C4-C3	122.70 (11)	C5-C6-C61	111.28 (11)
$w = 1/[\sigma^2(F_o^2) + (0.0474P)^2]$	for X-ray Crystallogra-	N4 - C4 - C5	116.44 (10)	C_{5} $-C_{6}$ $-C_{1}$	109.63 (10)
+ 0.2196 <i>P</i> 1	phy (1992, Vol. C. Tables	0-04-05	120.80 (11)	01-00-01	111.17(11)
where $P = (F_0^2 + 2F_0^2)/3$	4.2.6.8 and 6.1.1.4)	C6-C1-C2-C3	-25.1 (2)	C3-C4-C5-C6	26.1 (2)
(10 · 21 c)/5		C1-C2-C3-C4	-1.1(2)	C4-C5-C6-C1	-49.88 (15)
Data collection: CAD 4E C	all materiants CAD AT D	C2-C3-C4-C5	0.7 (2)	C2-C1-C6-C5	49.39 (14)

Data collection: CAD-4F. Cell refinement: CAD-4F. Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL92* (Sheldrick, 1993). Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *SHELXL92*.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) $U_{n} = \frac{1}{2} \sum \sum U_{n} a^{*} a^{*} a a$

	$\bigcup_{i \in \mathcal{A}_j} \bigcup_{j \in \mathcal{A}_j} \bigcup_{j \in \mathcal{A}_j} \bigcup_{j \in \mathcal{A}_j} \bigcup_{i \in \mathcal{A}_j} \bigcup_{j \in \mathcal{A}_j} \bigcup_{i \in \mathcal{A}_j} \bigcup_{i$					
	x	у	z	U_{ea}		
C1	0.90179 (14)	0.0325 (2)	0.58423 (5)	0.0425 (3)		
C11	0.89133 (15)	0.1740 (2)	0.63345 (6)	0.0473 (3)		
011	0.98764 (13)	0.2810 (2)	0.64762 (5)	0.0701 (3)		
C12	0.7313 (3)	0.3008 (4)	0.70549 (11)	0.0879 (6)		
012	0.75905 (12)	0.1641 (2)	0.66032 (5)	0.0648 (3)		
C2	0.79022 (15)	0.0854 (2)	0.53615 (5)	0.0440 (3)		
02	0.76018 (14)	0.25507 (12)	0.52939 (5)	0.0639 (3)		
C3	0.73021 (15)	-0.0582 (2)	0.50051 (5)	0.0438 (3)		
C4	0.77063 (13)	-0.2447 (2)	0.50684 (5)	0.0400 (3)		
N4	0.72052 (13)	-0.3800(2)	0.47135 (5)	0.0461 (3)		
C41	0.6254 (2)	-0.3418 (2)	0.42086 (6)	0.0546 (4)		
C1'	0.61022 (13)	-0.5087 (2)	0.38074 (5)	0.0431 (3)		
C2'	0.5491 (2)	-0.6772 (2)	0.39992 (6)	0.0520 (3)		
C3'	0.5324 (2)	-0.8263 (2)	0.36136 (8)	0.0612 (4)		
C4'	0.5753 (2)	-0.8084 (2)	0.30354 (7)	0.0660 (4)		
C5′	0.6355 (2)	-0.6416 (3)	0.28411 (7)	0.0663 (4)		
C6'	0.6540 (2)	-0.4937 (2)	0.32255 (6)	0.0545 (3)		
25	0.8804 (2)	-0.3034 (2)	0.55307 (6)	0.0461 (3)		
C6	0.88543 (14)	-0.1711 (2)	0.60564 (5)	0.0421 (3)		
261	1.0114 (2)	-0.2240 (2)	0.64782 (7)	0.0587 (4)		
				· · · ·		

The authors thank Dr K. R. Scott of Howard University for the sample and the Medical Research Council of Canada (grant to PWC) for financial support.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71403 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CR1068]

References

- Abell, C., Allen, F. H., Bugg, T. D. H., Doyle, M. J. & Raithby, P. R. (1988). Acta Cryst. C44, 1290-1292.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Bucourt, R. & Hainaut, D. (1965). Bull. Soc. Chim. Fr. pp. 1366-1378.
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: Plenum Press.
- Edafiogho, I. O., Hinko, C. N., Chang, H., Moore, J. A., Mulzac, D., Nicholson, J. M. & Scott, K. R. (1992). J. Med. Chem. 35, 2798-2805.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). J. Appl. Cryst. In preparation.